

TEST REPORT N° 150820-a

This report removes and supersedes the test report n° 150820, to be returned or destroyed

SAND QUALIFICATION According to NF P 90-319 (with derogation)

Granular filter media — Test methods — Measurement of filtration efficiency and retention capacity

Filter ref.: Hi-tech glass filter media 20 m/h

CUSTOMER IDENTIFICATION							
Company NATURE WORKS WATER TECHNOLOGIES							
Address	Poniente, 5 - 3590 ALTEA (ALICANTE) - SPAIN						
Contact	Mr Guillermo GIL VENEZIANI						
Purchase Order nb	Accepted quotation nb 141131						

IFTS REFERENCES						
IFTS order number	9185					
Quotation nb	141131					
Test date	24/03/2015					
Date of receipt of samples	13/03/2015					

Written by	Validated and signed by
The Test Engineer,	The Test Manager,
Hafedh SAIDANI	Date: 21/04/2015

Confidential document prepared for the attention of

NATURE WORKS WATER TECHNOLOGIES

This report is only related to the specified product(s). Its copy is not authorised other than in its full form.

IFTS acknowledges only the digitally certified file in pdf format, before transmission to the customer. The digital certification of the report, conducted by the Chambersign certification, remains valid indefinitely as long as the file does not undergo any change. In the event of a dispute, only the file of the digitally certified report kept by IFTS will be considered as being the authentic version.

Siège social 47510 FOULAYRONNES Email : ifts@ifts-sls.com

Téléphone : + 33 5 53 95 83 94 Rue Marcel Pagnol Fax : + 33 5 53 95 66 95

Association loi 1901 - JO du 31/05/1981 SIRET : 32279040300016, Agen - APE : 7112B TVA: FR45 322790403

www.ifts-sls.com

1 - SCOPE

NATURE WORKS WATER TECHNOLOGIES has requested IFTS (Institut de la Filtration et des Techniques Séparatives) to evaluate the performance of a specified number of samples according to NF P 90-319 (with derogation) : Granular filter media — Test methods — Measurement of filtration efficiency and retention capacity.

The data contained in the following paragraphs establishes the report of the test performed on the sample identified in paragraph 2 of this document. A separate test report is issued for any other test requested as per the purchase order.

This test has been performed with qualified personnel using thoroughly selected equipements in order to comply with test conditions summarized in paragraph 3 of this document. IFTS is accredited by the COFRAC to carry out tests and perform modular activities dealt with by the ISO/IEC 17025.

2 - TEST SAMPLE

Sample Ref.	IFTS Ref.
Hi-tech glass filter media	6566

Fig.1: Hi-tech glass filter media supplied by NATURE WORKS WATER TECHNOLOGIES

3- TEST CONDITIONS

The following conditions have been applied to determine the filtration efficiency and the retention capacity of the test filter medium:

The filter medium is initially washed one time (back washing at 30 m/h (8,7 L/min)).

- Procedure : NF P 90-319 (with derogation)

(*) Derogation to the NF P 90-319 : Constant flow rate during the test

- IFTS bench - Test fluid
- : -: Microfiltered water
- Flow rate : 5,84 L/min (20 m/h)
- Temperature : 23 °C (+/- 2°C)
- Test powder : specified according to ISO 12103-A4 (ISO CTD)
 - : Counting phase : 5,84 mg/L

Clogging phase :

110,20 mg/L

- On line particle counting : ~~ 5, 10, 20, 30, 40, 45, 50 and 60 μm
- Height/diameter of filtration sand : 70 cm / 15 cm
- Height/diameter of support sand* : 15 cm / 15 cm

End of test criteria

- Basic Upstream

- Final $\Delta P = 500 \text{ hPa or}$
- Maximum test duration as specified by the customer reached or
- Internal leakage detected

Fig. 2: Picture of the test rig

4- TEST RESULTS

4.1 End of test criteria

	End of test conditions	Actual value	End of test criteria
final ∆P (hPa)	500	530	YES
Test duration (min)	≤ 360	365	NO
Internal leakage	Leak	No leakage	NO

4.2 Filtration performances

Customer Ref.	<i>IFTS Ref.</i> Initial ΔP (hPa) Final ΔP (hPa)	Apparent capacity (g) at	Average filt	tration effic	iency (%)		
		(in a)		final ∆P	>5 µm	> 10 µm	> 45 µm
Hi-tech glass filter media	6566	0,06	530	219,0	59,07	70,66	98,17

Some internal leakage occuring up to + 500 mbar

4.3 Sand fluidization

		Duite of sourced	Cound hairshak	Back washing				
Customer Ref.	IFTS Ref.	height* (cm)	Filtration mode (cm) @ 20 m/h	flow rate (m/h)	Bed expansion (%)			
Hi-tech glass filter media	6566	75	74	30,0	6			

(*) without support sand : height of support sand : 15 cm

Fig. 3: Average filtration efficiency vs. particle size

Fig. 4: Picture of the granular material before and after the test

APPENDIX

TEST REPORT N° 150820-a-A

Granular filter media — Test methods — Measurement of filtration efficiency and retention capacity

According to NF P 90-319 (with derogation)

	/2015		Оре	erator :	ml				IFTS sample number:6566							
FILTER IDENTIFICATION																
Housing ref. : Supplied	by IFTS	3			Filte	er samp	le ref. : Hi-teo	h glass filter	media							
OPERATING CONDITIONS																
Test fluid				Type :	Microfilte	ered wat	er		Tei	nperature (°C) :	21.9					
Test contaminant				Type :	ISO CTE)				Batch number :	12295C					
Fluid circuit																
Filte	test				Con	tamina	nt injection			Particle	counting					
Flow rate	(L/min)	5,84	Flow ra	te (I /h)		Co	ncentration (m	g/L)	Counter	Sensor	Flow rate	Volume (ml.)				
Period Volume (_)	10			Init	tial	Final	Average	ocumen	0011001	(mL/min)	v olalilo (<u>=</u>)				
Counting Clogging Concentration	(mg/L)	12,2 110.2	1	0 2	42 35	26 18	383 2916	405 3217	HIAC 8000	HRLD400	20	20				
÷999		•••,=				-		-								
Test never store svalution (se	. finuna F	•														
Test parameters evolution (se	e figure 5	5)														
Test parameters evolution (se	e figure 5	5)														
Test parameters evolution (se	e figure 5	5)														
Test parameters evolution (se TEST RESULTS Differential pressure at test flo	w rate	5)								160.0						
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa)	• figure 5	<u>;)</u>						Cle	ean assy (hPa) : ar media (hPa) :	160,0						
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see	w rate : 100 : 60,0 igure 4)	5)						Cle Final ΔP granula	əan assy (hPa) : ar media (hPa) :	160,0 530						
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see Test period n.	w rate <i>:</i> 100 <i>:</i> 60,0 igure 4)	<u>)</u> 1		2	2		3	Cle Final ΔP granula 4	pan assy (hPa) : ar media (hPa) : 5	160,0 530 6	7	8 9				
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see Test period n. Initial concentration (mg/L)	w rate : 100 : 60,0 igure 4)	i) 1 12,2	110,2	2	2		3	Cle Final ΔP granula	pan assy (hPa) : ar media (hPa) : 5	160,0 530 6	7	8 9				
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see Test period n. Initial concentration (mg/L) Test time (min)	w rate : 100 : 60,0 igure 4) - 0	1 12,2 29	110,2 368	2 12,2 395	2		3	Cle Final ΔP granula	pan assy (hPa) : ar media (hPa) : 5	160,0 530 6	7	8 9				
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see Test period n. Initial concentration (mg/L) Test time (min) Test flow rate (L/min) :	• figure 5 • rate ∴ 100 ∴ 60,0 igure 4) 0 5,8	1 12,2 29 5,8	110,2 368 5,8	2 12,2 395 5,8	2		3	Cle Final ΔP granula	pan assy (hPa) : ar media (hPa) : 5	160,0 530 6	7	8 9				
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see Test period n. Initial concentration (mg/L) Test time (min) Test flow rate (L/min) : Differential pressure (bar) :	w rate ∴ 100 ∴ 60,0 igure 4) 0 5,8 0,15	1 12,2 29 5,8 0,15	110,2 368 5,8 0,63	2 12,2 395 5,8 0,6	2		3	Cle Final ΔP granula	pan assy (hPa) : ar media (hPa) : 5 5	160,0 530 6	7	8 9				
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see Test period n. Initial concentration (mg/L) Test time (min) Test flow rate (L/min) : Differential pressure (bar) : Injected mass (g) :	w rate	1 12,2 29 5,8 0,15 1,95	110,2 368 5,8 0,63 219	2 12,2 395 5,8 0,6 221	2		3	Cle Final ΔP granula 4	pan assy (hPa) : ar media (hPa) : 5 5	160,0 530 6	7	8 9				
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see Test period n. Initial concentration (mg/L) Test flow rate (L/min) : Differential pressure (bar) : Injected mass (g) : Injected mass	w rate : 100 : 60,0 igure 4) - 0 5,8 0,15 0 :	1 12,2 29 5,8 0,15 1,95 C _R =	110,2 368 5,8 0,63 219 219	2 12,2 395 5,8 0,6 221 g	2		3	Cle Final ΔP granula	ean assy (hPa) : ar media (hPa) : 5 1	160,0 530 6 	7	8 9				
Test parameters evolution (se TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (see Test period n. Initial concentration (mg/L) Test flow rate (L/min) : Differential pressure (bar) : Injected mass (g) : Injected mass	w rate : 100 : 60,0 igure 4) - 0 5,8 0,15 0 : erformed	1 12,2 29 5,8 0,15 1,95 C _R =	110,2 368 5,8 0,63 219 219 ant flow ra	2 12,2 395 5,8 0,6 221 g ate	2		3	Cle Einal ΔP granula 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ean assy (hPa) : ar media (hPa) : 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	160,0 530 6 	7	8 9				
Test parameters evolution (set TEST RESULTS Differential pressure at test flo Housing (hPa) Granular media (hPa) Table 1 : Clogging curve (set Test period n. Initial concentration (mg/L) Test flow rate (L/min) : Differential pressure (bar) : Injected mass (g) : Injected mass Derogation to NFP 90 319: Test person test	w rate : 100 : 60,0 igure 4) - 0 5,8 0,15 0 : erformed	1 12,2 29 5,8 0,15 1,95 C _R =	110,2 368 5,8 0,63 219 219 ant flow ra	2 12,2 395 5,8 0,6 221 g ate	2		3	Cle Final ΔP granula	ean assy (hPa) : ar media (hPa) : 5 5	160,0 530 6	7	8 9				

Table 2 : Filtration ratio and efficiency* vs. test period

Cumulative counts (N/mL)

Period	∆p (bar)			> 5 µm		> 10 µm		> 20 µm		> 30 µm		> 40 µm		> 45 µm		> 50 µm		> 60 µm	
1	0.15	Up	E (%)	5510	55 10	653,3	70.27	22,39	09.51	2,85	07.26	0,54	05.02	0,24	09 72	0,14	100	0,05	100
1	0,15	Down	∟ (70)	2469	55,19	134,8	19,31	0,33	50,51	0,08	97,20	0,02	95,95	0,003	90,72	0,00	100	0,00	100
2	0.6	Up	E (%)	13400	60.59	1761	67 62	46,71	91 22	5,03	03 30	0,62	07.62	0,25	07.67	0,12	100	0,04	100
2	0,0	Down	∟(/0)	5283	00,58	570,1	07,02	8,77	01,22	0,33	93,39	0,01	97,02	0,01	97,07	0,00	100	0,00	100
A.	(orado	Up	⊑ff	9455	50.07	1207	70 66	34,55	96.6	3,94	04 74	0,58	06.86	0,25	09 17	0,13	100	0,05	100
A	verage	Down	LII.	3876	39,07	352,5	70,00	4,55	00,0	0,21	34,/4	0,02	90,00	0,01	30,17	0,00	100	0,00	100

*Note: Efficiency value is rounded to 100% when above 99.995

Sample Ref. : Hi-tech glass filter media (IFTS N. 6566)

Sample Ref. : Hi-tech glass filter media (IFTS N. 6566)

Sample Ref. : Hi-tech glass filter media (IFTS N. 6566)

Sample Ref. : Hi-tech glass filter media (IFTS N. 6566)